翻訳と辞書
Words near each other
・ Slick (nickname)
・ Slick (surname)
・ Slick (tool)
・ Slick (wrestling)
・ Slick Aguilar
・ Slick Aircraft Slick 360
・ Slick Airways
・ Slentho
・ SLEP
・ SLEPc
・ Slepcev Storch
・ Slependen
・ Slependen Station
・ Slepi potnik
・ Slepian
Slepian's lemma
・ Slepian–Wolf coding
・ Slepotice
・ Slepčany
・ Slepče
・ Slepčević
・ Slepšek
・ Slerp
・ SLES
・ Slesarev Svyatogor
・ Slesinger
・ Slesse Creek
・ Slesse Mountain
・ Slesser
・ Slessor


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Slepian's lemma : ウィキペディア英語版
Slepian's lemma
In probability theory, Slepian's lemma (1962), named after David Slepian, is a Gaussian comparison inequality. It states that for Gaussian random variables X = (X_1,\dots,X_n) and Y = (Y_1,\dots,Y_n) in \mathbb^n satisfying E() = E() = 0,
:E()=E(), i=1,\dots,n, \text \ E() \le E(Y_j ) for i \neq j,
the the following inequality holds for all real numbers u_1,...,u_n:
:P(\le u_1, \dots, X_n \le u_n ) \le P(\le u_1, \dots, Y_n \le u_n ) ,
While this intuitive-seeming result is true for Gaussian processes, it is not in general true for other random variables—not even those with expectation 0.
As a corollary, if (X_t)_ is a centered stationary Gaussian process such that E() \geq 0 for all t, it holds for any real number c that
:P\left \ge P\left P\left, \quad T,S > 0 .
==History==
Slepian's lemma was first proven by Slepian in 1962, and has since been used in reliability theory, extreme value theory and areas of pure probability. It has also been reproven in several different forms.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Slepian's lemma」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.